

High-Resolution Urban Emission Mapping: Sensor-Driven CO₂ Inverse Modeling in Glasgow

Sandeep Kodoli¹, Craig Michie¹, Christopher Davison¹, Christos Tachtatzis¹, Naomi Asimow², Ronald C. Cohen²

¹University of Strathclyde, Glasgow, United Kingdom

²University of California, Berkeley, USA

Background

- □ Urban CO₂ emissions account for approximately 70% of global anthropogenic CO₂ emissions.
- Emission estimates are complex due to lack of fine-grained data, hence need accurate emission estimations in city scale.
- Need for more observations to achieve targeted emission reduction strategies and updating existing emission inventories.
- Glasgow has set a Net Zero carbon target by **2030**.
- Almost 50% reduction in CO2 emissions in Glasgow city in last 20 years.

Transport, electricity, and buildings account for most of the reductions

Data and Methods

Berkley Environmental Air quality and CO₂ Network

Part of the Glasgow Environmental Monitoring of Indoor and Outdoor Air (GEMINOA) Project

- Deployed CO₂ sensors in schools throughout Glasgow
- High-resolution, minute-by-minute CO₂
 concentration data

Vaisala CarboCap GMP343 CO2 sensor

٠

Spatial concentration footprints across the city

Data and Methods

Inverse modelling framework for Glasgow

Difference between Posterior

and Prior CO2 emissions

Adjusted emission map for Glasgow

Sensitivity to Receptor sites

Mean Anthropogenic Emissions

- The city center shows the largest discrepancies between prior and posterior emissions.
- The posterior estimate reflects a 23% increase in CO₂ emissions compared to the prior.

• This corresponds to an additional **475 ktCO₂e** beyond what is reported by local bottom-up activity data in 2022

Posterior Emission estimates Glasgow(2022)

- Winter: ~ 70% increase emissions largely contributed by heating
- **Spring**: ~30% increase from fire emissions and urban sources.
- Summer: ~29% lower emissions
- Autumn: ~9% increase, relatively stable emissions.
- Highlights strong seasonal impact on CO₂ patterns.

Emission Hotspots in the city

University of Strathclyde Glasgow Major roads and dense buildings in Glasgow city Centre combine to create a CO₂ emission hotspot

Sectoral Emissions

Traffic emissions remain relatively constant in primary analysis, while point sources exhibit notable seasonal fluctuations

In 2022, Cars & Taxis - 1.667 billion miles (76.7% of total VMT) Other Vehicles (Buses, Trucks, Vans etc.) -507 million miles (23.3% of total VMT)

•Bottom-up Estimate (Inventory-based): ~ 774 ktCO₂e •Top-down Estimate (Inverse Modeling):~ 802 ktCO₂e

Winter Emissions

- Winter emissions rise with colder temperatures (R² = 0.58) due to heating demand.
- Little to no correlation in other seasons.
- Highlights need for efficient, low-emission heating to reduce winter CO₂.

Weekday and weekend emissions

- 9.8% increase in total posterior emission in weekend compared to weekdays
- Prior values showed larger gap of 21.8%
- Reduction in overestimation of prior assumptions by inverse estimates.

CO₂ emission comparison before and after implementation of LEZ

• CO₂ emissions in the city center decreased by 1–3% during three months (August to October) following the Low Emission Zone (LEZ) implementation, comparing 2022 and 2023 data.

Summary and Highlights Seasonal Emissions

- Winter: Higher emissions than previous estimates, mainly due to heating demand.
- Summer: Lower emissions due to reduced energy use and possibly an underestimated biospheric uptake in the prior.

Urban Sensitivity

- Posterior estimates show notable refinements-especially in the city center.
- Highlights the importance of fine-scale urban emission modeling.

Traffic & Point Sources

- Traffic emissions remain steady year-round, aligning with territorial emission values.
- Point sources display clear seasonal trends.

Summary and Highlights

Model Improvements

- Posterior adjustments enhance emission accuracy by incorporating real-world activity patterns while acknoweledging possible uncertainties in transport fluxes.
- Sector-specific accuracy still requires more detailed activity data.
- Further work is needed to reduce uncertainties, particularly those arising from transport models and biospheric flux estimates.

Need for Continuous Monitoring

- Posterior adjustments enhance emission accuracy by incorporating real-world activity patterns.
- However, sector-specific accuracy still requires more detailed activity data.
- To reliably adjust emission inventories and capture long-term trends, continuous sensor-based CO₂ monitoring across the city is essential.

• Such observations allow for dynamic updating of models, better tracking of urban policy impacts,

Bridging the Gap: Science Meets Society

Recent Posts

Nov 18, 2024

Oct 09, 2024

Models

Quantifying Glasgow's

Emissions Reductions

How to Estimate City

Emissions Using Computer

Nov 09, 2024

Jul 22, 2024

Science Centre

Nov 06, 2024 Meet the Expert at Glasgow Air Quality Game

Air Quality Issue - The Spark

Strathclyde Team in Brain Storming Session at the Glasgow Science Centre

May 22, 2024 Decomposing Glasgows CO₂ Emissions - Key Insights

Benchmarking prog

https://geminoa.strath.ai/

SmartSTEMs

L

Jun 06, 2024 Investigating Air With Glasgow Science Centre One of the team gets in Science Centrel

May 28, 2024 SmartSTEMS: Air Quality

Youth Engagement

Thank you for listening